I am going to cover a LOT of material today and taking notes will be hard. Slides gladly shared – just send me a note. I will also share via a newsletter and blog post on the website (above).
Agenda

• Funding and (sometimes) non-dilutive support
 • What’s available?

• Filing
 • Recent events & future meetings
 • Three key ideas

• Finance
 • Payor models
Major AMR development initiatives worldwide

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Funding & Duration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD 1.2B (2010-19)</td>
<td></td>
<td>Phase 2 and 3 product development against 21st Century Health Threats, including drug-resistant bacteria, and CARB-X</td>
</tr>
<tr>
<td>USD 124M (2018-22)</td>
<td></td>
<td>Targets prevention of drug-resistant infections in low- and middle-income countries (LMICs). Disease surveillance, vaccine development, economic modeling, and CARB-X. Global</td>
</tr>
<tr>
<td>USD 550M (2016-21)</td>
<td></td>
<td>Hit-to-lead to Phase 1 product development of therapeutics, diagnostics, and preventatives against WHO and CDC priority drug-resistant bacteria. Non-dilutive. Global</td>
</tr>
<tr>
<td>Euro 270M (2017-23)</td>
<td></td>
<td>Product development from discovery to delivery including novel therapeutics, optimizing antibiotics, developing combinations. WHO priority pathogen list. Non-dilutive. Global</td>
</tr>
<tr>
<td>GBP 315M (2018-21)</td>
<td></td>
<td>Funded through Global AMR Innovation Fund (GAMRIF) and the Fleming Fund to help LMICs tackle AMR. Fleming Fund (surveillance capacity) & GAMRIF (innovative R&D) both have a ‘One Health’ focus</td>
</tr>
<tr>
<td>Euro 500M (2018-28)</td>
<td></td>
<td>Support of national research programs as well as contributions to international initiatives like CARB-X, GARDP and JPIAMR</td>
</tr>
<tr>
<td>Euro 700M (2014-20)</td>
<td></td>
<td>Basic science, novel therapeutics, diagnostics, economic models. Priority pathogens including pathogens on WHO priority list. Member states only</td>
</tr>
<tr>
<td>USD 1.4B (2016-18)*</td>
<td></td>
<td>Basic research, SBIRs, pre-clinical services and other R&D against bacterial threats, for vaccines, therapeutics and diagnostics. Non-dilutive. Global. Mostly antibacterial, but also includes viral, fungal, and parasite resistance</td>
</tr>
<tr>
<td>USD 165M (2018-23)</td>
<td></td>
<td>Lead optimization to Phase I development of therapeutics & diagnostics against priority drug-resistant bacteria defined by WHO and CDC. Dilutive. US and European companies</td>
</tr>
<tr>
<td>GBP 175M (2016-21)</td>
<td></td>
<td>Drug-resistant infections program focused on policy, strengthening evidence for action, clinical trial capabilities and innovative product development including CARB-X</td>
</tr>
</tbody>
</table>

Slide courtesy Kevin Outterson
Funding source details (1 of 3)

• NIH/NIAID: *many* opportunities here
 • Main NIAID funding page: https://www.niaid.nih.gov/grants-contracts/opportunities
 • DMID Research Services: https://www.niaid.nih.gov/research/microbiology-and-infectious-diseases-resources
 • ARLG (https://www.arlg.org/): Clinical phase programs

• DTRA (US Defense Threat Reduction Agency)
 • www.dtra.mil: Multiple *open solicitations*¹ for biothreat-related ideas. Special interest in diagnostics (to my eye)

• BARDA: Clinical funding for Phase 2 and beyond
 • Recent example: $100m for ceftobiprole Phase 3

• CARB-X: Early discovery to Phase 1 🇬🇧 🇩🇪 🇺🇸
 • 2019 Funding round should be announced soon

Funding source details (2 of 3)

• EC: Horizon 2020¹ & IMI²
 • No currently open calls to my knowledge
 • https://ec.europa.eu/research/health/index.cfm?pg=area&areaname=amdr

• JPIAMR: Joint Programming Initiative for AMR
 • 2014-17: EUR 52m supporting 50 projects
 • Call 9³ underway: focus on Diagnostics & Surveillance

• EIB Innovfin Infectious Diseases
 • Debt to equity, 7.5m to 75m EUR for EU-based work

• Novo’s REPAIR fund: $165m over 5 years
 • Next EU round opens 1 April
 • https://www.repair-impact-fund.com/

• VALUE-DX: IMI DRIVE-AB-like project for diagnostics

Funding: Other notes

• The jockey matters more than horse
 • Investors know that programs hit roadblocks. The question is whether you then know what to do!
 • Be credible: show you know what it takes to succeed
 • Be clear: show that you know your own weaknesses

• Ways to learn
 • There are lots of events (e.g., ASM-ESCMID development meetings, Gordon Research Conference, etc.) where you can get in-depth exposure to latest ideas in a setting that promotes conversation with others
 • *We’ll discuss a list of future meetings in a moment*...
Agenda

• Funding and (sometimes) non-dilutive support
 • What’s available?

• Filing
 • Recent events & future meetings
 • Three key ideas

• Finance
 • Payor models
Events to study (1 of 2)

• 13 Apr + 5 May 2017: FDA workshop + IDSA whitepaper on narrow-spectrum agents
 • Can we develop drug for P. aeruginosa or A. baumannii?
• 26 May 2017: Non-inferiority paper (Clin Infect Dis)
 • Survey of major designs, explains need for NI studies
• 14-15 Jun 2017: NIAID workshop: Robust PK-PD
 • Excellent talks, materials shared on request
• 16 Jun 2017: FNIH HABP-VABP docket submission
 • Supports mortality and mortality-plus as endpoints. Study of VABP + ventilated HABP as a group; non-ventilated HABP is different.
• 2 Aug 2017 FDA Unmet Need Guidance (final)
 • You need to read this one!
Events to study (2 of 2)

• 7 Nov 2017 FDA VRBPAC: Pfizer’s *S. aureus* vaccine

• Inhaled cipro FDA AMDAC (16 Nov 17, 11 Jan 18)
 • Two attempts, two failures

• 23 Apr 2018 ECCMID Expeditied Programs
 • EMA, FDA, PK-PD, & non-traditional agents

• 2 May 2018 Plazomicin FDA AMDAC
 • Yes on cUTI; no on CRE bacteremia (a complex story!)

• 21-22 Aug 2018: FDA workshop on alternatives to antibiotics
 • Excellent discussion (more on this later in this talk)

• 14 Jan 2019: EMA Draft guidance on antibacterials
 • Open for comment until 31 Jul 2019
 • My analysis: http://amr.solutions/blog/draft-ema-antibacterial-guidance-analysis
Future Meetings of Special Note

In addition to ECCMID, ASM Microbe, and IDWeek...

• 3-6 Sep 2019 ESCMID-ASM Conference (#4) on Drug Development for AMR (Boston)
 • Don’t miss this one! Includes two Bootcamp sessions on Tue 3 Sep and a CARB-X product developer meeting on Fri 6 Sep

• 19-27 Oct 2019 International Course on Antibiotics and Resistance (ICARe, Les Pensières, Annecy, France)
 • An excellent soup-to-nuts tour

• 1-6 Mar 2020 GRC on Antibacterial Discovery and Development (Il Ciocco, Tuscany, Italy)

• **Come to meetings like these!**
 • For more events, see footer of my newsletters
The paradox of antibiotics

• We want new drugs for bad bugs
 • The superiority of NEW is easily shown in the lab on the basis of MIC testing or in animal models of infection

• But, asking for clinical data leads to a problem
 • Trials must (usually) be designed to avoid superiority
 • Instead, we must use non-inferiority designs showing similar activity relative to another active agent

• Example: Limb-threatening infection due to MRSA*
 • It is not ethical to randomize to methicillin vs. NEW
 • Must instead do something like vancomycin vs. NEW
 • Must NOT enroll if known or likely resistant to NewDrug or comparator

*MRSA = Methicillin-resistant Staphylococcus aureus

Key Ideas: 1 of 3
This idea is very, very hard

• Non-life-threatening illness (e.g., migraine)
 • Delayed effective therapy is not dangerous

• Cancer: Placebo is (usually) not possible, but there is always room to improve on 5- or 10-year survival

• Infections: We routinely produce Cure of potentially fatal illness
 • And, it’s hard to improve on Cured

• But, the idea of non-inferiority is confusing
 • “We want a better drug.”
 • I get it, but insisting on clinical superiority before approving new agents means progress only when/if the pipeline (again) becomes inadequate

• Next 2 slides: Let’s discuss in two other ways
In Infection, superiority = something bad but preventable has happened: Example

• In 2012-13, colistin was the only alternative for CRE\(^1\). A study of plazomicin vs. colistin-based SOC\(^2\) for CRE was plausible

• Plazomicin wins, but efforts to control CRE made it very hard to find cases & enroll (note small N). Cost was $1m/case!

• And, 40% mortality is not good!

• Future studies will need to use plazomicin (or one of the other new agents with comparable data) as the comparator

1. CRE = Carbapenem-resistant Enterobacteriaceae
2. SOC = Standard of Care
But, superiority trials are used in other areas! Tell me again: **Why not in Infection?**

<table>
<thead>
<tr>
<th></th>
<th>Migraine</th>
<th>Cancer</th>
<th>Human Infection</th>
<th>Animal Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Durable cure is routine</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2. Placebo is routinely acceptable</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Existing agents lose utility over time → new agents always needed</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>4. New agents are really for use...</td>
<td>Today</td>
<td>Today</td>
<td>Tomorrow(^1)</td>
<td>Today</td>
</tr>
</tbody>
</table>

Points 1 & 2: Superiority is routinely used in some areas not but others
- **Migraine (non-life-threatening example):** Placebo with rescue is possible
- **Cancer:** Durable cure without complications is not routine and hence continual improvement (e.g., improve 5- or 10-year survival) is always possible
- **Animal Health:** Placebo is acceptable
- **Human Infection:** Placebo not usually acceptable & it’s hard to improve on Cured!

Points 3 & 4: We need to develop new anti-infectives despite this limitation
- There are negative Public Health issues if superiority is (or becomes) possible!

1. This points to part of the reason why new antibiotics suffer from several forms of market failure. For more on this, see the DRIVE-AB report, various blogs on my website, and any of the writings of Kevin Outterson (his 11 Apr 2018 op-ed in STAT News is a great place to start: https://www.statnews.com/2018/04/11/innovation-new-antibiotics-fight-superbugs/).

Solution: The (emerging) 2-study path for new traditional antibiotics

• 1x NI RCT* vs. a good comparator
 • UDR (Usual Drug Resistance) setting: both agents are predicted to be active
 • Done in one of the major indications (cUTI, cIAI, etc.)

• 1x study for difficult (MDR-XDR) pathogens
 • Randomized vs. Best-Alternative Therapy (BAT) if possible, Open-label if N small or no BAT

• Example: Plazomicin initial registration program
 • NI RCT: 1x complicated UTI NI RCT vs. meropenem
 • Difficult: 1x study in CRE vs. colistin (prior slide)

Rare pathogens & infections

- Small ("Tier C"\(^1\)) trial programs: just barely (or not) powered
- Possible? Maybe, but remains difficult ... more work needed
 - Not (just) regulatory: Payor evidence is important!
 - Unless treatment effect is unquestionably large, randomized data are likely required. But not clear how to handle very small datasets.

- Multiple relevant papers
 - My blog notes on the 13 Apr 2017 + 5 May 2017 FDA workshops
 - EMA draft (2019) antibacterial guidance

Non-traditional products

• Products with interesting potential to augment
 • Virulence factor inhibitors, etc.
 • I would love to see success, but this is hard because...
• Must often show NEW + SOC\(^1\) beats SOC alone

• Prevention also has a superiority challenge
 • Reducing carriage does NOT work
 • Must show an effect on a subsequent infection
 • Must show this with best available prevention methods
 • **Frustratingly hard,** can require very large studies
 • See Pfizer’s failed *S. aureus* vaccine trial

• *Let’s talk more about superiority in general...*

\(^1\)SOC = Standard of Care
STAR: Four treatment archetypes

Examples
- Penicillin
- Phage
- Lysins
- Antisense

Example
- BL-BLI (Beta-lactam beta-lactamase inhibitor) combinations

Example
- Gram-negative activity from colistin + approved Gram-positive antibiotic

Example
- Virulence factor inhibitor + approved antibiotic

2. The terms “Potentiator” or “Enhancer” have been used for products in all 3 of these categories
STAR: Four treatment archetypes

- Products in the Augment category always require a demonstration of *clinical* superiority
- **AUGMENT + EXISTING** must beat **EXISTING** alone
- **EXISTING** must be fully & properly dosed

Example²
- Virulence factor inhibitor + approved antibiotic

2. The terms “Potentiator” or “Enhancer” have been used for products in all 3 of these categories
STAR: Four treatment archetypes

- Products in the Augment category always require a demonstration of *clinical* superiority
- **AUGMENT + EXISTING** must beat **EXISTING** alone
- **EXISTING** must be fully & properly dosed

Augment
- Virulence factor inhibitor + approved antibiotic

- As modern therapies are pretty good, this is a steep hill!
- **Translation:** Probability of success is very low unless the add-on has a dramatic effect relative to **SOC**
- Please think long and hard before pursuing this path!

2. The terms “Potentiator” or “Enhancer” have been used for products in all 3 of these categories
Agenda

• Funding and (sometimes) non-dilutive support
 • What’s available?

• Filing
 • Recent events & future meetings
 • Three key ideas

• Finance
 • Payor models
Antibiotic benefits go beyond simple use

- **Enabling value:** Many surgical and medical procedures rely on prophylaxis with effective antibiotics.
- **Option or insurance value:** We may want to have an antibiotic in reserve before we really need it, so it’s ready if resistance arises or worsens.
- **Diversity value:** Having multiple antibiotics may reduce selection pressure and delay resistance.

“Antibiotics are the fire extinguishers of medicine!”

But, current economic model is broken

- Current approach
 - Everyone is delighted to have a new drug
 - But, use is delayed in effort to preserve new antibiotic
- Stewardship perspective: Entirely rational
- Economic perspective: A financial loss
 - Many analyses show same thing: Not financially rational to do antibiotic R&D
- Problem: Current pay-per-use model reimburses for only a piece of the value
AVERAGE PUBLIC ANTI-INFECTIVE COMPANY SHARE PRICE HAS DROPPED BY 50% OVER THE LAST 12 MONTHS
ENTERPRISE VALUE OF SEVERAL COMPANIES IS NEGATIVE
(USD millions)

As of Feb 26, 2019
Many efforts to analyse and fix this

- DRIVE-AB (IMI / ND4BB)
 - Recommended push & pull incentives
- Duke-Margolitis project (US)
- UK AMR Review (“O’Neill report”)
- It’s slow, but we are now seeing progress
 - UK: Committed project
 - US: Legislative progress
Key Idea:

• Market entry reward
• Payment for registration of an interesting new agent
• Delinks use from income
Work underway on these ideas

• US: Two pieces of legislation under discussion
 • DRG carveout (DISARM): eliminates financial penalty for using novel inpatient antibiotics in a bundled care system. Is not really a MER but it is a start
 • Transferrable exclusivity (REVAMP): Registration of an interesting new agent provides extended market exclusivity that can be used for another product

• UK: Recently announced 5-year national action plan
 • “We will test a new model that will de-link the payments made to companies from the volumes of antibiotics sold, basing the payment on a NICE-led assessment of the value of the medicines and supporting good stewardship.”
You can help!

• There is an immediate opportunity to support PR campaign for DISARM (de-coupling of payment from DRG) and need for longer-term pull incentives (e.g., subscription model)

• $10,000+/company support requested

• Contact me for details
Not all will earn an award: Novelty!

- Fire extinguishers come in different categories
 - You only need one of each!
- Incremental extensions
 - Some of this is OK
 - But, it will only go so far
- Scientific value + Unmet Need is best path to economic value
 - Novel mechanisms
 - Novel molecular basis of resistance
 - Addressing *strong* Unmet Need
How much financing is needed?

DRIVE-AB recommended a global plan:

• to start at **USD 800 million per year in 2018**,
• increasing to **USD 1 billion per year in about 2020**, and
• to **USD 1.2 billion in about 2021**, including the USD 550 million/year spent as of 2017.
Must continue other funding...

Adapted from Hoffman S, Outterson K et al JLME 2015
Can this be done?
Example – International Space Station

- No pooled budget
- Bilateral agreements between participating countries
- $150b cost (2010 estimate)
 - $7.5m/person-day for the 20k person-days of 2010 to 2015
Example - CERN

- USD 1.2 billion per year (operating budget)
- Agreed 50+ years ago
Summary

• Change is coming
 – Must stop paying for antibiotics as if we were paying firemen per fire
 – This requires a change to the entire ecosystem

• Developers also need to think differently
 – Push funding is pretty easy to find
 – Accessing future Pull rewards will require careful selection of projects
 – Not all products will have equal value
 – Program design must also be carefully considered
Thank you!

John H. Rex, MD
Chief Medical Officer, F2G Ltd; Expert-in-Residence, Wellcome Trust; Operating Partner, Advent Life Sciences

Email: john.h.rex@gmail.com
Newsletter: http://amr.solutions

Slides happily shared – just drop me a note or see the newsletter’s website.