

### Decisions, Decisions: What Makes a Good Hit? A Good Lead? Why Do You Write a TPP? How Do You Write a TPP?

Lynn Silver, PhD LL Silver Consulting, LLC

September 5, 2017

# Agenda

- Short talks
  - Lynn Silver: Early discovery, hit validation
  - Tim Waddell: Medicinal chemistry
  - Tom Dougherty: Case histories
  - John Tomayko: TPPs [Target Product Profile]
- Panel discussion
- Audience Q&A

# **Discovery Strategies**

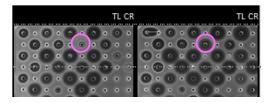
- May be directed toward TARGETS

   Finding inhibitors of specific bacterial functions
- Or Empirical, using KILL-THE-BUG screens
- Each approach has adherents
  - Empirical screening was the source of almost all antibiotics
  - Target-based screening is/seems more rational
- You can get "hits" pretty easily

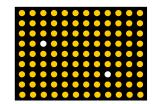
# HOWEVER

- Neither an enzyme inhibitor nor a bactericidal compound is a drug
- It's not even a lead
- Many steps to qualify a hit as a lead
- And many more to qualify an optimized lead as a clinical candidates

"Hit to lead" in discovery of small molecule antibacterial agents

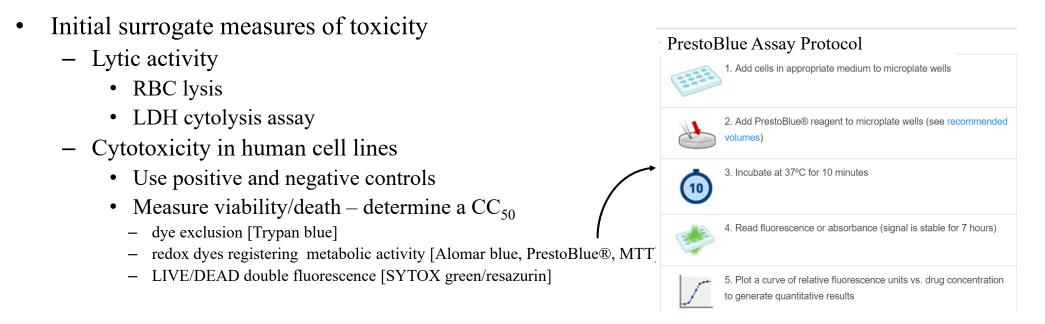

- Find hits by various methods
- Each has a different path for follow-up
- Basic questions are similar for all paths

### Three scenarios for hit generation from synthetic libraries


Screen for target inhibition in vitro



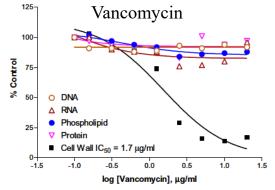
Whole cell directed phenotypic screen




Bacterial killing (empirical) screen



| Chemical attractiveness and tractability    | Chemical attractiveness and tractability | Chemical attractiveness and tractability |
|---------------------------------------------|------------------------------------------|------------------------------------------|
| Does it have an MIC?                        | Counterscreens to eliminate false        | Toxicity                                 |
| MIC due only to inhibiting in vitro target? | positives                                | Resistance                               |
| Explore MOA                                 | Secondary assays to confirm MOA          | MOA                                      |
| Resistance                                  | Resistance                               | Spectrum $\pm$ Serum                     |
| Initial toxicity                            | Initial toxicity                         | Static/cidal                             |
| Spectrum $\pm$ Serum                        | Spectrum ± Serum                         | /                                        |
| Static/cidal                                | Static/cidal                             |                                          |
| If no MIC, why?                             |                                          | d for ortinization                       |
| Can it be optimized for entry?              |                                          | d for optimization                       |


# In vitro measures of toxicity



- Rough Therapeutic Index (TI) =  $CC_{50}$ /MIC in comparable amount of serum
- Aim for TI >100 but could start at >10
- Caveat: high plasma protein binding (PPB) can interfere with cytotoxicity tests

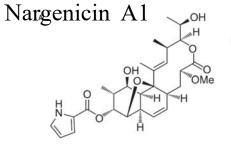
## Mechanism of Action (directed screening)

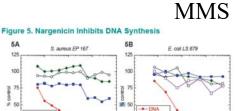
- Is the MIC due to inhibition of your target?
  - Macromolecular synthesis labeling [MMS] identifies pathway
    - Supports specificity



- Does overproduction of target raises MIC?
- Does underexpression of target lowers MIC?
- Resistance mutations map in the target gene




- Select for resistance
  - Map mutations
- Curses! At what frequency of resistance [FoR]?
- If high frequency and fit, the compound may select rapidly for resistance in the clinic
- But what is "high frequency?"
  - Related to the infectious load of the pathogen
  - If  $10^{10}$  bacteria in an infection, then resistant mutants could be present [before challenge] at frequencies higher than  $1 \times 10^{-10}$
  - 10<sup>-8</sup> is probably too high; 10<sup>-9</sup>?? Need more modeling to be predictive

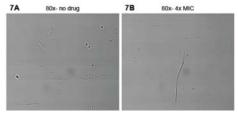

Rapid resistance is probable with single-targeted antibacterials

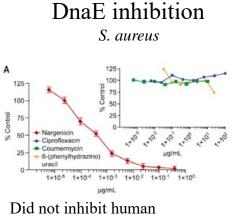
### Nargenicin: discovered in GyrB underexpression screen

#### Anti-sense downregulated strain shows much larger zone of inhibition than wild type

Painter, Ronald E M., et al. (2015) Elucidation of DnaE as the Antibacterial Target of the Natural Product, Nargenicin. Chemistry & Biology 22, 1362-1373.

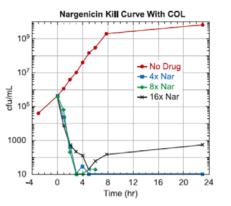






#### Induction of SOS

| Compound      | Mechanism of Action | SOS Assay | UvrA Assay   | DNA binding Assay |
|---------------|---------------------|-----------|--------------|-------------------|
| Ciprofloxacin | Gyrase              | SOS+      | Not reversed | Not reversed      |
| Mitomycin C   | Alkylating agent    | SOS+      | Reversed     | Not reversed      |
| Griseolutein  | Alkylating agent    | SOS+      | Reversed     | Not reversed      |
| Actinomycin D | Intercalator        | SOS-      | Not reversed | Reversed          |
| Nargenicin    | unknown             | SOS+      | Not reversed | Not reversed      |

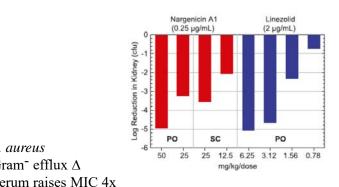
FoR 1 to 3 x 10<sup>-9</sup> Maps to DnaE (S765L)


#### E. Coli filamentation





 $\alpha$ ,  $\beta$ ,  $\gamma$  Polymerases at 100X MIC


### Rapid killing

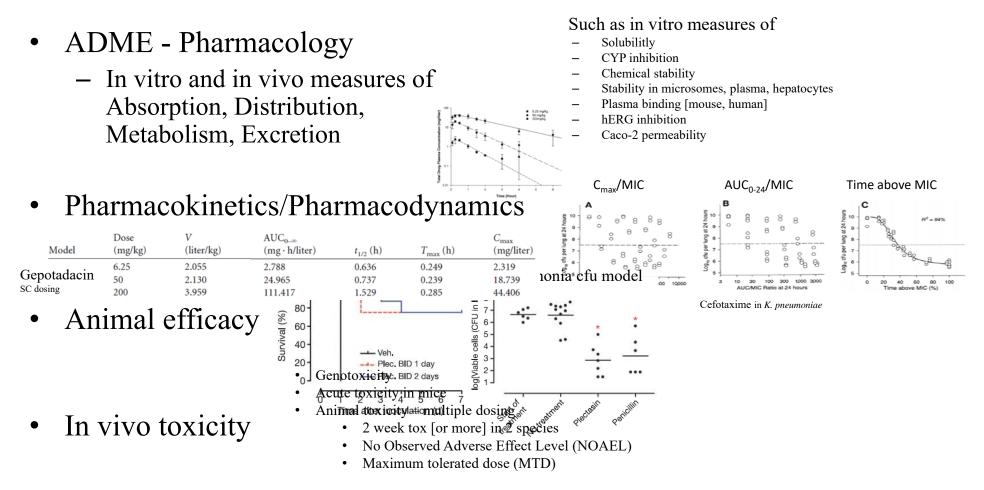


#### Narrow spectrum

| Species         | Phenotype         | MIC (µg/mL) | [                 |
|-----------------|-------------------|-------------|-------------------|
| C. albicans     |                   | >32         | Ι                 |
| S. aureus Smith | macS, linS        | 0.25        | I                 |
| S. aureus Smith | + 50% serum       | 1           | I                 |
| St. pneumo      | (pS, qS, mS) Iso  | >32         | T                 |
| E. faecalis     | VSE macR          | >32         | Ī                 |
| B. subtilis     | +                 | >32         | Ĩ                 |
| H. influenzae   | ampS, quinS, macS | >32         | Ι                 |
| E, coli         | Mouse pathogen    | >32         | Ī                 |
| E. coli         | Wild-type         | >64         | Ī                 |
| E. coli         | lpxC              | 64          | I                 |
| E. coll         | tolC              | 0.25        | Ι                 |
| E. coli         | lpxC, tolC        | ≤0.0625     | I                 |
| P. aeruginosa   | Wild-type         | >64         | C                 |
| P. aeruginosa   | Efflux del        | 4           | S. aure           |
| P. aeruginosa   | mexXY             | >64         | Gram <sup>-</sup> |
| P. aeruginosa   | mexEF-oprN        | >64         | Serum             |

#### In vivo efficacy (S. aureus)




# Is the hit worth further work?

Establish SAR

and Optimize

- What are pros and cons?
  - Reasonable potency
  - Low toxicity
  - Low resistance potential
  - Spectrum
  - Chemically attractive and tractable
- Now
  - Try to improve by medicinal chemistry [iterative process]
  - Evaluate pharmacology
  - In vivo efficacy
  - Consider the TPP

# With a more optimized lead



# Do you have a candidate?

- Is it safe enough to dose at levels high enough to cure infections?
- Does it have a useful antibacterial spectrum?
- Is dosing route and regimen commensurate with desired indication?
- In other words, does it meet the criteria of the TPP?