NDA Requirements: Surveillance, Clinical Trial Data, Breakpoints

Kevin M. Krause Director – Microbiology Achaogen, Inc.

Presented at the ASM/ESCMID Conference on Drug Development to Meet the Challenge of Antimicrobial Resistance September 6–8, 2017, Boston, MA, USA

Disclosures and Disclaimer

- Kevin Krause is an employee of and shareholder in Achaogen, Inc.
- The views and opinions expressed in this presentation are those of the author and do not necessarily reflect the official policy or positions of Achaogen

Microbiology for Clinical Development – Requirements and Potential Pitfalls

- Surveillance Programs
 - Best practices for design
 - Using and interpreting the data
- Clinical Trial Data
 - Requirements for regulatory submission
- Breakpoints
 - Approaches to setting tentative and final interpretive criteria

Surveillance

Global Surveillance: An Important Investment

- Defines the spectrum of activity for a molecule
- Establish potency against recent clinical isolates
- Determine susceptibility rates against relevant comparators
- Focus on comparators used to treat the species studies or in the expected clinical indication(s)
- Identifies rates and trends in resistance
 - -Robust sampling needed to capture rare resistance types
- Provides the opportunity to build challenge sets of isolates for AST companies and isolates for other non-clinical studies

Global Surveillance: Consider Starting Early

- Traditionally, surveillance begins before or during Phase 2
- As a result of accelerated development pathways and/or molecules qualifying for 505(b)(2), starting surveillance pre-Phase 1
 - May be necessary to ensure sufficient data for filing
 - May also result in increased financial risk as requires a large investment before proof of concept

Global Surveillance: Designing a Comprehensive Study

- FDA guidance recommends evaluating activity of the parent molecule, important metabolites and relevant comparators against at least 500 fresh clinical isolates of each potential pathogen in the intended indication(s)
 - Isolates with global geographic diversity are required
 - -Must include molecularly characterized resistance mechanisms of relevance
- Recommend completing <u>at least</u> 3 consecutive years global surveillance for NDA/MAA
 - Provides longitudinal analysis of resistance trends
 - Provides ability to identify local and/or clonal outbreaks of resistant isolates

Potential Pitfall #1 - Final Surveillance Data Sets are Insufficient

- Possible risk to regulatory approval
 - -Gain alignment on design with the FDA/EMA as early as possible
 - Consider opportunities to supplement prospective surveillance with institution specific studies
- Missed opportunity for desired label language
 - Important to provide sufficient numbers of isolates for List 2 pathogens
 - Molecular typing of resistance markers is expected to enable label claims
 - Collaborate with surveillance providers on study design

Potential Pitfall #2 - Discordance Between Clinical and Surveillance Data

- Consider local epidemiology data from surveillance when selecting sites and countries for clinical trials
 - Recommend not opening sites in a region of the world where surveillance data has not been collected
- Compare data from clinical trial data sites to global surveillance
 - Confirm that trial site selection didn't introduce bias
 - If differences are noted, can they be explained by a local outbreak of a rare resistance type or some other sampling issue?

Clinical Trial Data

Clinical Study Setup – Working with a Central Lab

- Typically a central lab is used to conduct testing on all pathogens isolated from patients enrolled in clinical trials
 - Species identification
 - MIC data using pre-made frozen or dry-form MIC panels with relevant comparators
 - -Kirby-Bauer disk susceptibility data research use only (RUO) disks
 - Molecular characterization
- Sponsor provides tentative breakpoints for investigational agent and defines which breakpoints to apply to comparator

Clinical Study Setup - Breakpoints for Data Analysis During Trial

- Used to define primary analysis population exclusions for resistant isolate subsets
 - -Prospectively define resistance category definitions in the clinical protocol
- Analyze data sets using the appropriate breakpoints for the submission

 Use MIC trays that include drug dilution ranges able to capture all breakpoints
- Examples
 - For U.S. filings, CLSI breakpoints are typically used when available
 FDA breakpoints are used when CLSI breakpoints not available
 EUCAST breakpoints can be used if FDA/CLSI breakpoints aren't available
 For E.U. filings, EUCAST breakpoints should be used

Study Setup – Clinical Microbiology and Patient Samples

- Definition of a valid clinical sample
 - Regulatory guidance available but needs to be informed by standard clinical practices
 - Examples
 - Urine sample: <a>>10⁵ CFU/mL at baseline from midstream clean catch or suprapubic aspiration with no more than 2 uropathogens present
 - •Respiratory sample: sputum with >25 WBC and <10 squamous cells

Establishment of species labeled pathogens and contaminants

- •Would the isolate typically be treated in clinical practice?
- Do two isolates of the same species represent distinct isolates or a single isolate with a resistant subpopulation?

Potential Pitfall #3 - Logistics of Sample Transport and Testing

- Capabilities of local labs vs. regional labs
 - Weigh risks of shipping to a regional lab for local ID and AST vs. errors from low quality local labs
- Transit time of sample from patient to culture must be monitored if using a regional lab
 - Proper shipping containers for local temperatures or airplane cargo hold conditions
 - Example Urine preservative tubes can be used if shipping urine samples long distance, but might be inconsistent with local practice and can't be frozen

Ongoing Clinical Study - Monitoring of Microbiology Data

- Discordance between local and central ID must be reconciled
 - Pre-define rules for when to retest at central lab, when to test the backup isolate and how to correct local data entry errors
- Tentative breakpoints and resistance development must be monitored
 - -Used to define analysis populations
 - Pre-define "resistance development" as well as unusual MICs
 - Set expert rules to automatically flag and retest these isolates
 - Different FDA and EUCAST breakpoints can impact data interpretation for comparator agents
- Prospectively define decision making algorithms for pathogen adjudication
 - Document decisions for each isolate in a manner that will satisfy auditors
- QC should be run each day susceptibility testing is conducted during a trial and all results retested if QC is out of range

Potential Pitfall #4 - Low Evaluability Rate Leads to Underpowered Study

- Use historical trial data to estimate evaluability rates
- Conduct weekly blinded monitoring of culture positivity rates
 - -Look for site level trends and opportunities for retraining
 - Consider closing sites that have very low evaluability rates

Approaches to Molecular Characterization are Evolving

- PCR for key, defined resistance elements
 - -PVL in MRSA, VanA vs VanB VRE
- Multiplex PCR tests for larger scale testing
 - Off the shelf tests for specific resistance clusters (beta-lactamase families)
 - Provides an analysis of what you were looking for, but not what else was present (or absent)
 - Doesn't allow for identifying point mutations in resistance elements
- WGS addresses above challenges and is becoming standard practice

Potential Pitfall #5 - Use of Sequencing Data in Regulatory Filings

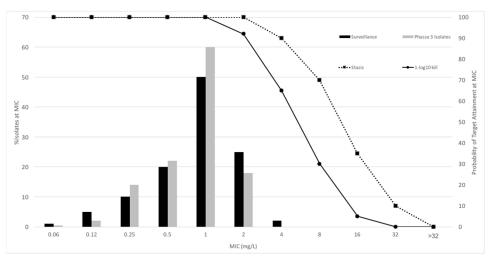
- Data interpretation methods are still in development
- Data presentation can be challenging due to sheer volume of data
- How can the data be curated to ensure integrity for future use?
- The data is valuable for research purposes, but country specific privacy laws might not allow use of the data for other purposes – check patient consent forms!

Breakpoints

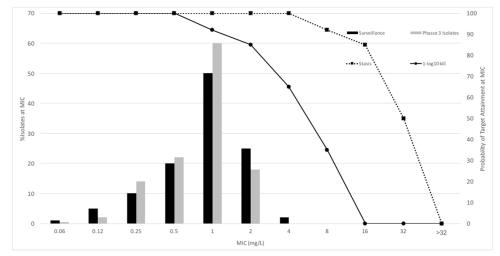
What are Breakpoints?

- Breakpoints assist in the selection of antibacterial options that are appropriate for treatment of clinical infections
- MIC breakpoints are derived after consideration of:
 - -Clinical and microbiological outcomes by baseline MIC from Phase 3 studies
 - Probability of PK/PD target attainment (PTA)
 - -In vivo efficacy data
 - -MIC distributions from surveillance
- Breakpoints are assigned per pathogen/pathogen group NOT per indication
- Disk breakpoints are derived from MIC breakpoints with the goal of minimizing interpretation error rates

How are Breakpoints Used?


- Breakpoints are interpreted as Susceptible (S), Intermediate (I), Resistant (R) or Non-susceptible (NS)
- S, I and NS/R are reported on a typical hospital antibiogram
 - -MIC values are rarely if ever reported
 - Interpretation says nothing about relative potency only whether or not a drug has a reasonable chance of being effective against a given isolate
- Provisional breakpoints are set based on PK/PD prior to Phase 3
 - -Used to exclude patients from primary analysis populations in non-inferiority studies
 - -Allows for monitoring of potential "resistance" development during clinical program
 - Used by automated AST companies to set MIC range for test development

The FDA and EUCAST Provide Guidance on Data Needed for Establishing Breakpoints


- Clinical and Microbiological outcomes by MIC
 - Ideally provides evidence of efficacy at MICs up to and including the breakpoint
 However, MICs approaching the breakpoint are rare in most clinical studies
- PTA data is used to supplement the clinical data
 - Uses a statistical approach to predict the likelihood that a given dose could provide sufficient drug exposure to treat a pathogen at a given MIC
 - -Data can be used to argue for a higher breakpoint in cases of limited clinical data
- In vivo efficacy studies with human simulated exposures
- The distribution of MICs found in U.S. surveillance
- EUCAST also applies the Epidemiological Cutoff Factor or ECOF
 - The MIC population associated with wild type isolates vs. those with underlying class resistance

Using PK/PD as Part of a Breakpoint Justification

Hypothetical Scenario with positive clinical/microbiology outcomes at an MIC of 2 mg/L

- >90% probability of stasis target attainment at highest surveillance MIC of 4 mg/L
- Phase 3 data supports a breakpoint of 2 mg/L
- Consider using target attainment information to justify a breakpoint of 4 mg/L

- >90% probability of stasis target attainment at MICs up to 16 mg/L
- Phase 3 data supports a breakpoint of 2 mg/L
- Breakpoint of 16 mg/L leaves too much room for MIC creep within susceptible population
- Propose a breakpoint of 4 mg/L

Potential Pitfall #6 - Tentative Breakpoints are Too High

- Patients may not be properly excluded from primary analysis populations
- Automated AST manufacturers may not be able to accommodate drastic changes between tentative and final breakpoints
 - Could result in redoing a significant portion of AST development
 - Results in significant delays to AST availability
 - Increases cost of AST development significantly
- Use a combination of PK/PD and MIC distributions from surveillance to set realistic tentative breakpoints

Final Breakpoints Appear in the Microbiology Section (12.4) of the Drug PI

Table 7: Susceptibility Test Interpretive Criteria for Ceftolozane/Tazobactam						
Pathogen	Minimum Inhibitory Concentrations (mcg/mL)			Disk Diffusion Zone Diameter (mm)		
	S	I	R	S	I	R
Enterobacteriaceae	≤2/4	4/4	≥8/4	≥21	18-20	≤17
Pseudomonas aeruginosa	≤4/4	8/4	≥16/4	≥21	17-20	≤16
Streptococcus anginosus Streptococcus constellatus and Streptococcus salivarius	≤8/4	16/4	≥32/4			
Bacteroides fragilis	≤8/4	16/4	≥32/4			

S = susceptible, I = intermediate, R = resistant

Table 8. Susceptibility Interpretive Criteria for Ceftazidime/Avibactam						
Pathogen		Inhibitory tion (mg/L)	Disk Diffusion Zone Diameter (mm)			
	S	R	S	R		
Enterobacteriaceae	≤ 8/4	≥ 16/4	≥ 21	<u>≤ 20</u>		
Pseudomonas aeruginosa	≤ 8/4	≥ 16/4	≥ 21	<u>≤ 20</u>		

Table 9:

Susceptibility Test Interpretive Criteria for Telavancin

Pathogen	Minimum Inhibitory Concentration (mcg/mL)				
9	S	I	R		
Staphylococcus aureus (including methicillin-resistant isolates)	≤ 0.12				
Streptococcus pyogenes Streptococcus agalactiae	≤ 0.12				
Streptococcus anginosus group	≤ 0.06				
Enterococcus faecalis (vancomycin-susceptible isolates only)	≤ 0.25				

TABLE 2 SUSCEPTIBILITY INTERPRETIVE CRITERIA FOR PIPERACILLIN/TAZOBACTAM

	Susceptibility Test Result Interpretive Criteria					
	Minimal Inhibitory Concentration (MIC in µg/mL)			Disk Diffusion (Zone Diameter in mm)		
Pathogen	S	I	R	S	Ι	R
Enterobacteriaceae and Acinetobacter baumanii	≤16	32 - 64	≥128	≥21	18 - 20	≤17
Haemophilus influenzae ^a	≤ 1	-	≥2	≥21	-	-
Pseudomonas aeruginosa	≤64	-	≥128	≥18	-	≤17
Staphylococcus aureus	≤8	-	≥16	≥18	-	≤17
Bacteroides fragilis group	≤ 32	64	≥128	-	-	-

Resources

- FDA Microbiology Data for Systemic Antibacterial Drugs Development, Analysis, and Presentation Guidance for Industry
- EMA Guideline on the Evaluation of Medicinal Products indicated for Treatment of Bacterial Infections
- EMA Guideline on the use of pharmacokinetics and pharmacodynamics in the development of antibacterial medicinal products