Dear All: I recently sent around discussions of ways to measure/estimate drug concentrations both <u>in living animals</u> (<u>aptamer-based probes, Kevin Plaxco's group</u>) and with sufficient spatial resolution to permit construction of <u>2d/3d</u> <u>drug concentration maps (MALDI-MSI, David Perlin's group</u>). These notes generated a lot of interest and in particular Ed Weinstein (FDA) made me aware of <u>a book chapter</u> in which he and his co-authors had looked at a range of such techniques.

Finding this intriguing, I worked with Kevin, David, and Ed to prepare a summary of the range of current techniques for doing something that you could loosely call PK in high resolution by time and/or space. Several ways of categorizing the methods are shown in the table below.. It's fascinating to see them side-by-side and realize the wealth of opportunities that exist.

Each approach has strengths and weaknesses but I must say that MALDI-MSI and aptamer-based probes really standout as exciting new tools by offering strong spatial information (MALDI-MSI) or easily obtained continuous drug measures (aptamer-based probes) based in both cases on measurements of the unmodified analyte.

Overview of techniques: Specialized probe and/or modified analyte vs. general approach to detection of unmodified analytes

	Continuous, with potential for in vivo	Single-time point*		
Cnatial		Law anarmy (31) or 14C) radia labeled analyte (VA/bala Bady		
Spatial	Fluorescent probe	Low energy (³ H or ¹⁴ C) radio-labeled analyte (Whole-Body		
resolution	 Hyperpolarized NMR/MRI 	Autoradiography)		
	PET Imaging	MALDI-MSI		
	 Photoacoustic imaging 	Laser-capture microdissection		
Specific site	Aptamers on a probe	Grind tissue & assay extract		
	 Microdialysis 			

^{*}Of course, any single-time point method could be made effectively continuous by doing serial sampling but there are practical limits to how much of this you can do.

Rough rank order of spatial imaging resolution methods:

- 1) Higher resolution: MALDI-MSI, autoradiography
- 2) Lower resolution: Fluorescent probe, Hyperpolarized NMR/MRI, PET Imaging, Photoacoustic imaging, Laser-capture microdissection

Absolute analyte concentration data: (1) Aptamers on a probe, (2) Microdialysis (with difficulty), (3) Laser-capture microdissection, and (4) Grind tissue & assay extract

If this intrigues, you may also want to look both this book and PK-specific chapter within it:

- 1) Book: <u>Imaging Infections</u>: From Bench to Bedside. S. K. Jain.: https://link.springer.com/book/10.1007%2F978-3-319-54592-9
- 2) Chapter in said book Ordonez, A. A., L. E. Bambarger, S. K. Jain and E. A. Weinstein (2017). Biodistribution and Pharmacokinetics of Antimicrobials. lmaging Infections: From Bench to Bedside. S. K. Jain. Cham, Springer International Publishing: 209-222. : https://link.springer.com/chapter/10.1007/978-3-319-54592-9 10

And while you are exercising your PK-PD neurons, you might also want to review the material from the <u>14-15 June 2017 NIAID PK-PD workshop</u>, the excellent <u>EMA guideline on PK-PD for antibacterials</u>, and the discussions of PK-PD at the <u>1 Mar 2017 FDA workshop on animal models in support of narrow-spectrum agents</u> for *A. baumannii* and *P. aeruginosa*.

All best wishes and with thanks to Ed, David, and Kevin for provoking this interesting exploration, --jr

John H. Rex, MD | Chief Medical Officer, F2G Ltd. | Chief Strategy Officer, CARB-X | Expert-in-Residence, Wellcome Trust. Follow me on Twitter: @JohnRex_NewAbx. See past newsletters and subscribe for the future: http://amr.solutions/blog.html

Brief summary of techniques for high-resolution (time or space) PK

Method	Short summary	Pro/Co Examples with links
Aptamers on a probe	Surface bound aptamer binds analyte. Changes in aptamer configuration is sensed electronically.	1) Pro: Real-time, continuous, can be in vivo 2) Pro: Absolute concentrations can be determined 3) Con: Must create a suitable aptamer for each analyte 4) Con: Sensor is one place - no spatial resolution A. T. C. Johnson and D. S. Perlin (2017). "A. Vieira, K. L. Ploense, T. E. Kippin and K. W. Plaxco (2017). "Real-time measurement of small molecules directly in awake, ambulatory animals." Proc Natl Acad Sci U 114(4): 645-650. Open-Access. http://amr.solutions/blog/real-time-continuous-in-vivo-drug-monitoring plus this white paper on Arroyo-Curras' method. Non-in vivo: Wiedman, G. R., Y. Zhao, A. Mustaev, J. Ping, R. Vishnubho A. T. C. Johnson and D. S. Perlin (2017). "An Aptamer-Based Biosensor of the Azole Class of Antifungal Drugs." mSphere 2(4): 1-10. Open access. http://msphere.asm.org/content/2/4/e00274-17
Fluorescent probe https://en.wikipedia.org/wiki /Chemical_imaging	Fluorescent probe is bound to a macromolecule such as an antibody	1) Pro: Real-time, continuous, can be in vivo 2) Pro: Provides spatial resolution 3) Con: Requires chemical modification of the parent drug which may alter its properties 4) Con: Best for larger molecules as the size of the probe strongly alters the behavior of smaller molecules 5) Con: Can't see very deeply. Light has limited tissue penetration due absorption. Cilliers, C., I. Nessler, N. Christodolu and G. M. Thurber (2017). "Trackin Antibody Distribution with Near-Infrared Fluorescent Dyes: Impact of D Structure and Degree of Labeling on Plasma Clearance." Mol Pharm 14 1623-1633. Open access. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415873/pdf/mp6b03.pdf

Method	Short summary	Pro	/Co	Examples with links
Grind tissue and assay	After drug	1)	Pro: Well-established, no	Widely used – many published examples
extract	administration, whole		special equipment	
	organs are ground and	2)	Pro: Works for any analyte	
	analyte is extracted		and gives absolute	
			concentrations	
		3)	Con: Single time-point	
		4)	Con: No spatial resolution	
Hyperpolarized NMR/MRI	Isotopically labeled	1)	Pro: Real-time, continuous,	Meier, S., P. R. Jensen, M. Karlsson and M. H. Lerche (2014).
	probe molecules with		can be in vivo	"Hyperpolarized NMR probes for biological assays." Sensors (Basel) 14(1):
https://en.wikipedia.org/wiki	hyperpolarized protons	2)	Pro: Provides spatial	1576-1597. Open access
/Hyperpolarization (physics)	are injected and		resolution	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926627/
	metabolic conversion	3)	Con: Requires isotopically	
	can be tracked		labeled probe	
		4)	Con: Probe is short-lived	
			(few minute duration at	
			best)	
Laser-capture	Optical laser-based	1)	Pro: Provides spatial	Good discussion at
microdissection	dissection of tissue		resolution within limits of	https://en.wikipedia.org/wiki/Laser capture microdissection.
	fragments which are		dissection resolution	
	captured for analysis	2)	, ,	Example of use: Zhao, Y., B. Prideaux, Y. Nagasaki, M. H. Lee, P. Y. Chen, L.
			and gives absolute	Blanc, H. Ho, C. J. Clancy, M. H. Nguyen, V. Dartois and D. S. Perlin (2017).
			concentrations	"Unraveling Drug Penetration of Echinocandin Antifungals at the Site of
		3)	Con: Single time-point	Infection in an Intra-Abdominal Abscess Model." <u>Antimicrob Agents</u>
		4)	Con: Tedious for extensive	<u>Chemother</u> .
			spatial mapping	
Low energy (³ H or ¹⁴ C) radio-	Labeled analyte is	5)	•	Widely used – many published examples
labeled analyte (Whole-Body	visualized by		resolution	
Autoradiography)	autoradiography of	6)	Con: Not absolute: only	
	tissue slide		relative drug concentrations	
		_,	can be estimated	
		7)	Con: Single time point	

Method	Short summary	Pro/Co	Examples with links
MALDI MSI	2D (x-y) MALDI scan of tissue slide	Pro: Spatial mapping Pro: Any analyte, including metabolites Con: Not absolute: only relative drug concentrations can be estimated Con: Single time point	Tracking a drug: Zhao, Y., B. Prideaux, Y. Nagasaki, M. H. Lee, P. Y. Chen, L. Blanc, H. Ho, C. J. Clancy, M. H. Nguyen, V. Dartois and D. S. Perlin (2017). "Unraveling Drug Penetration of Echinocandin Antifungals at the Site of Infection in an Intra-Abdominal Abscess Model." Antimicrob Agents Chemother. Open Access. See also: http://amr.solutions/blog/high-resolution-effectively-3-d-drug-concentration-measurements-in-tissues Tracking other multiple analytes: Scott, A. J., J. W. Jones, C. M. Orschell, T. J. MacVittie, M. A. Kane and R. K. Ernst (2014). "Mass Spectrometry Imaging Enriches Biomarker Discovery Approaches with Candidate Mapping." Health Physics 106(1): 120-128. https://www.ncbi.nlm.nih.gov/pubmed/24276555
Microdialysis https://en.wikipedia.org/wiki /Microdialysis	Tiny probe, push dialysate fluid through, capture analyte for later analysis	 Pro: Well established Pro: Can detect any analyte Pro: Can be semi-continuous but isn't real-time as samples must be analyzed Con: Not spatial probe is where it is. Con: Not quantitative without cumbersome determination of dilution and recovery efficiencies. 	de Araujo, B. V., A. Diniz, E. C. Palma, C. Buffe and T. Dalla Costa (2011). "PK-PD modeling of beta-lactam antibiotics: in vitro or in vivo models?" J Antibiot (Tokyo) 64(6): 439-446. Open Access. http://www.nature.com/ja/journal/v64/n6/full/ja201129a.html?foxtrotcall back=true

Method	Short summary	Pro/Co	Examples with links
PET Imaging	Gamma rays from	1) Pro: Real-time, continuous,	DeMarco, V. P., A. A. Ordonez, M. Klunk, B. Prideaux, H. Wang, Z. Zhuo, P. J.
	positron emitting tracer	can be in vivo	Tonge, R. F. Dannals, D. P. Holt, C. K. Lee, E. A. Weinstein, V. Dartois, K. E.
https://en.wikipedia.org/wiki	is detected	2) Pro: Provides spatial	Dooley and S. K. Jain (2015). "Determination of [11C]rifampin
/Positron_emission_tomogra		resolution	pharmacokinetics within Mycobacterium tuberculosis-infected mice by
phy		3) Con: Requires an isotopically	using dynamic positron emission tomography bioimaging." Antimicrob
		labeled molecule. Synthetic	Agents Chemother 59(9): 5768-5774. Open Access.
		radiochemistry can be a	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538528/
		challenge.	
		4) Con: Duration limited by	
		short half lives of minutes or	
		a few hours.	
Photoacoustic imaging	Absorption of light	1) Pro: Real-time, continuous,	Cash, K. J., C. Li, J. Xia, L. V. Wang and H. A. Clark (2015). "Optical drug
	causes production of	can be in vivo	monitoring: photoacoustic imaging of nanosensors to monitor therapeutic
https://en.wikipedia.org/wiki	heat that becomes	2) Pro: Provides spatial	lithium in vivo." ACS Nano 9(2): 1692-1698. Not Open Access.
/Photoacoustic effect	sound that is detected	resolution	http://pubs.acs.org/doi/pdf/10.1021/nn5064858
	by (e.g.) piezoelectric	3) Con: Can't see very deeply	
	sensors.	into tissues	
	Change in state of a	4) Must be able to design a	
	chromoionophore on	suitable chromoionophore.	
	binding of an analyte is		
	measured by differences		
	in acoustic signature.		